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Abstract 

For surgical robots that conduct minimally invasive surgeries, robust and precise 

perception of the robot end-effector is required for tracking and navigation of 

the surgical probes or needles. In this scenario, single sensor may not be 

sufficient due to its natural limitation that reduce the sensing robustness. This 

leads to the need for sensor fusion, which combines multiple sensory data and 

generates a better perception of the robot. One of the most common approaches 

for sensor fusion is the Kalman filter algorithm. In this report, a sensor fusion 

framework is used for estimating the attitude and angular velocity of robot end-

effector in constant angular velocity motion. The multi-sensor system consists of 

an optical tracker (NDI) and an inertial measurement unit (IMU), and a 

mathematical model for extended Kalman filter is proposed. Experimental 

results are shown to verify the proposed model and framework. 

 

Keywords: Surgical Robots, Robot Perception, Attitude and Angular Velocity 

Estimation, Sensor Fusion, Quaternions, Extended Kalman Filter (EKF), 

Optical Tracker, Inertial Measurement Unit. 
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1. Introduction 

1.1 Background and overview 

In field of robotic and autonomous systems, there’re three typical aspects- 

perception, planning, and control. Perception- a robot needs to percept the 

environmental conditions or changes, and extract useful information from 

them to decide what to do next. Planning, or decision making- a robot 

needs to be informed of its next step, which can be either a motion 

predefined by the designer or a decision or path generated by AI. Control- 

for the plans to be well-executed so that the system behaves exactly like 

what the designer wants, control strategy should be involved.  

Though all of the three above-mentioned aspects are crucial to the system, 

this text specializes in the perception of a surgical robot, where robust and 

precise sensing is required in robot-assisted surgeries. 

 

1.2 Objective 

For surgical robots (figure 1) [13: P.-L. Yen, et al. 2021], robust and precise 

sensing/estimation of attitude and angular velocity of the end-effector is 

required for conducting robot-assisted minimally invasive surgeries. To 

increase the robustness of sensor system, sensor fusion technique can be 

used accompanied by estimation algorithms, such as Kalman filtering. These 

builds up a more robust and precise perception of the robot, which is 

essential for further stages such as motion planning, navigation, or control, 

etc. 



5 
 

In this report, a sensor fusion framework is proposed for the estimation of 

attitude and angular velocity of the robot end-effector which is in the 

motion of constant angular velocity. The multi-sensor system consists of an 

optical tracker system (NDI) and an inertial measurement unit (IMU); a 

quaternion-based extended Kalman filter algorithm is proposed for 

estimation. The NDI has a strength of high accuracy, yet has low 

measurement frequency, limited measuring volume and is vulnerable to 

marker occlusions. IMU, on the other hand, has high measurement 

frequency, unlimited measuring volume, while suffers from low accuracy, 

high noise, and DC bias problems [2: Oh, H., et al. 2015]. The two sensors 

are complementary to each other and the fusion of two sensory data 

combined with an estimation algorithm can generate a robust and optimal 

estimation of the robot state. 

 

 

Figure 1 Surgical robot and its end-effector [13: P.-L. Yen, et al. 2021] 
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1.3 Literature review 

1.3.1 Sensor fusion and Kalman filter 

Sensor fusion is a well-known method that “fuses” multiple sensory signals 

(often provided by multiple sensors together) to generate a more 

consistent, accurate, dependable, and robust sensing information. Sensor 

fusion brings various advantage to the perception of the system such as 

higher robustness and reliability, extended spatial and temporal coverage, 

higher resolution, less ambiguity and uncertainty, etc. [1: W. Elmenreich, 

2002]. 

One of the most common approaches for sensor fusion in existing 

literature is the Kalman filter, which is an algorithm that combines 

mathematical model and (multi-)sensor measurements, and then optimally 

estimate the system’s state. [2: Oh, H., et al. 2015] proposed a sensor 

fusion framework with NDI and IMU based on Kalman filter to estimation 

the attitude of surgical instruments (figure 2). While it is specific for 

attitude estimation, not including angular velocity. [3: L. Armesto, et al. 

2004] proposed a mathematical model for multi-rate sensor fusion based 

on extended and unscented Kalman filter; vision sensor and inertia sensor 

are utilized. The state equation in the proposed model is a 6D tracking 

system, which, instead of rotation matrices, uses quaternions to describe 

attitude. 
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1.3.2 Quaternions 

Quaternions can be used to describe rigid body attitude and rotation in 3D 

space. There’re numerous advantages of using quaternions instead of 

rotation matrices to describe rotations. For example, as describing 3D 

rotations, rotation matrices have 9 parameters due to their nature of matrix 

algebra; while, quaternions only have 4 parameters and thus are minimally 

parameterized, and thus having higher computational efficiency, as 

compared to rotation matrices [4: J. Sola, 2017]. Literature also shows that 

for the feedback for spacecraft attitude stabilization, quaternions perform 

better than rotation matrices both in terms of speed of convergence and of 

energy consumption [5: Celani F., 2022]. There’re plenty of advantage of 

using quaternions rather than rotation matrices, a more detailed comparison 

of these two is given in [6: Hans-Peter Schröcker, 2022]. 

 

1.3.3 Quaternion-based extended Kalman filter 

To describe the attitude of a rigid body, rotational motion should be 

involved; while, rotations are nonlinear in general, which exceed the scope of 

 
Figure 2 Sensor fusion with NDI and IMU [2: Oh, H., et al. 2015] 
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what a Kalman filter is able to describe. Therefore, an extended Kalman 

filter (EKF) is an extension of Kalman filter that is valid for describing 

nonlinear system through linearization process at each time sample. 

According to existing literature, there’re many proposed models for 

quaternion-based extended Kalman filter, each with slight differences, 

depending on the application scenarios. [3: L. Armesto, et al. 2004] proposed 

a 6D tracking model for EKF, where three of the six dimensions are to 

describe rotational motion and is parameterized by quaternions. Though 

that the discrete-time propagation of quaternions is given, the whole model 

for EKF is not shown explicitly. [4: J. Sola, 2017] proposed a model for 

extended Kalman filter that involves both quaternions and rotation matrices 

in the states. The state vector is defined using the error states of the 

system. [7: H. Himberg, et al. 2009] proposed a simple model for EKF that 

can estimate head orientation and head angular velocity using the 

approximated solution of quaternion discrete-time propagation. 

In this report, a model for quaternion-based EKF using an analytical 

solution of quaternion propagation equation is proposed. The model is 

similar to the rotation part in [3: L. Armesto, et al. 2004], but with slight 

differences in the quaternion propagation equation. Detailed math equations 

of the model are also provided in this text. The proposed model is verified 

through physical experiment. 
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2. Methodology 

2.1 Proposed mathematical model 

2.1.1 Notations and symbols 

 

1. (⋅) (No special symbols): Scalar.

2. (⃗⋅) (Vector symbol): Vector.

3. q (Boldface): Quaternion (4-vector).

4. q
∗ (Asterisk): Quaternion conjugation.

5. q0 : Scalar part of the quaternion.

6. q⃗ : Vector part of the quaternion.

7. (⋅)n : The nth entry of the quaternion or vector.

8. ⋅ : Dot product.

9. × : Cross product.

10. ⊗ : Quaternion product.

11. [(⋅)]× : Skew- (cross-product-) operator.

12. [(⋅)⊗] : Left-quaternion-product matrix.

13. [(⋅)⊙] : Right-quaternion-product matrix.

14. Ts, fs : Discrete-time sampling period and sampling rate.

15. (̂⋅) (Hat): State estimate.
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2.1.2 Basic operations of quaternions 

 

 

 

 

 

 
Figure 3 Quaternion as a rotator [8: Song Ho Ahn] 

1. Quaternion definition

q = q0 + q1i + q2j + q3k ∈ H, qn ∈ R, ∀n

∶= q0!
∈R⊂H (scalar part)

+ q⃗!
∈Hp⊂H (vector part)

≡ [q0
q⃗
] (represented in 4-vector), (1)

i2 = j2 = k2 = ijk = −1.

2. Quaternion product (non-commutative in general)

q⊗ p = (q0p0 − q⃗ ⋅ p⃗) + (q0p⃗ + p0q⃗ + q⃗ × p⃗) ≡ [ q0p0 − q⃗ ⋅ p⃗

q0p⃗ + p0q⃗ + q⃗ × p⃗
] (2)

3. Unit quaternion

∥q∥ ∶=√q⊗ q∗ =

√
∑
n

q2n = 1. (3)

4. Unit quaternion as a rotator (rotate around the unit vector u⃗ by an angle θ), as shown in
figure 3,

q ∶= e
θ
2
u

= cos
θ

2
+ u⃗ sin

θ

2
≡ [ cos θ

2

u⃗ sin θ

2

] , u ∶= [0
u⃗
] , (4)

where e(⋅) is defined using the Euler’s formula, viz, e(⋅) = 1+(⋅)+ 1
2!
(⋅)⊗(⋅)+ 1

3!
(⋅)⊗(⋅)⊗(⋅)+⋯.

5. The rotation action (rotate a vector p⃗ using the sandwich product)

p
′
= q⊗ p⊗ q

∗, p =∶ [0
p⃗
] . (5)
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2.1.3 Quaternion Kinematics and useful definitions 

 

 
 

2.1.4 Nonlinear state-space model in quaternion-based EKF 

 

Considering the angular velocity and quaternion ω⃗ = [ωx ωy ωz]T , ω ∶= [0
ω⃗
] , q ≡ [q0

q⃗
], the

following definitions are given [4: J. Sola, 2019] [9: F. L. Markley, et al. 2014].

1. Skew-Operator [(⋅)]×

[ω⃗]× ∶=
⎡⎢⎢⎢⎢⎢⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤⎥⎥⎥⎥⎥⎦
∈ R

3×3, s.t. ω⃗ × (⋅) = [ω⃗]×(⋅) (6)

2. Left- and Right- Quaternion-Product Matrices, [(⋅)⊗], [(⋅)⊙]

[q⊗] ∶= q0I + [0 −q⃗T

q⃗ [q⃗]×] ∈ R4×4, s.t. q⊗ (⋅) ≡ [q⊗](⋅), (7)

[q⊙] ∶= q0I + [0 −q⃗T

q⃗ −[q⃗]×] ∈ R4×4, s.t. (⋅)⊗ q ≡ [q⊙](⋅) (8)

3. Left-Quaternion-Product Matrix of ω⃗

Ω(ω⃗) ∶= [ω⊗]. (9)

Followed by (6)-(9), the quaternion can be derived,

1. Quaternion ODE (Quaternion Kinematics) (Derived using (7)-(9), and [10: Y.-B.
Jia, 2015])

q̇(t) = 1

2
ω(t)⊗ q(t) ≡ 1

2
Ω(ω⃗(t))q(t). (10)

2. Quaternion Propagation in Discrete-Time (Derived using (10), [9: F. L. Markley,
et al. 2014], and [11: D. Simon, 2006])

q(k + 1) = eTs

2
ω(k)
⊗ q(k) ≡ [ cos(Ts

2
∥ω⃗(k)∥)I + 1

∥ω⃗(k)∥ sin(
Ts

2
∥ω⃗(k)∥)Ω(ω⃗(k))]

'(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((()((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((*
∶=g(k,ω⃗(k))∶R×R3

→R4×4

q(k), (11)

which is a closed-form solution if ω⃗ is const. or holds const. over each sampling period.

Define the system state x, process noise w, output measurement z, and measurement noise υ,

x(k) ∶=
⎡⎢⎢⎢⎢⎢⎣
q(k)
ω⃗(k)
ω⃗b(k)

⎤⎥⎥⎥⎥⎥⎦
, x ∶ R→ R

10; w(k) ∶=
⎡⎢⎢⎢⎢⎢⎣
wq(k)
α⃗(k)
α⃗b(k)

⎤⎥⎥⎥⎥⎥⎦
, w ∶ R→ R

10, w(k) ∼N (0,Σw(k)); (12)

z(k) ∶= [qm(k)
ω⃗m(k)] , z ∶ R→ R

7; υ(k) ∶= [υqm
(k)

υω⃗m
(k)] , υ ∶ R→ R

7, υ(k) ∼N (0,Συ(k)), (13)

where the system state consists of the quaterion q, angular velocity ω⃗, and its bias ω⃗b. qm and
ω⃗m are quaternion measurement and angular velocity measurements, obtained from optical tracker
(NDI) and IMU, respectively; ω⃗b is the angular velocity bias of IMU; w(k) and υ(k) are process and
measurement noises, both are white, zero-mean, Gaussian stochastic processes.
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2.1.5 Linearization process 

 

 

2.1.6 EKF algorithm 

 
 

 

 

 

 

Combining (11)-(13) and assuming constant angular velocity and bias yields,

⎡⎢⎢⎢⎢⎢⎣
q(k + 1)
ω⃗(k + 1)
ω⃗b(k + 1)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
g(k, ω⃗(k))q(k + 1)

ω⃗(k)
ω⃗b(k)

⎤⎥⎥⎥⎥⎥⎦
+ Ts ⋅

⎡⎢⎢⎢⎢⎢⎣
wq(k)
α⃗(k)
α⃗b(k)

⎤⎥⎥⎥⎥⎥⎦
, or x(k + 1) = f(k, x(k)) + Γw(k), (14)

[qm(k)
ω⃗m(k)] = [

I4×3 04×3 04×3
03×4 I3×3 I3×3

]
⎡⎢⎢⎢⎢⎢⎣
q(k)
ω⃗(k)
ω⃗b(k)

⎤⎥⎥⎥⎥⎥⎦
+ [υqm

(k)
υω⃗m
(k)] , or z(k) =Hx(k) + υ(k) (15)

The linearization process in EKF [12: T. Kailath, et al. 2000] requires the computation of
Jacobian matrix of the nonlinear function f in (14), which is given by,

Fk = [ ∂fi
∂xj

]x=x(k) =
⎡⎢⎢⎢⎢⎢⎣
g4×4 [∂(gq)

∂ω⃗
]4×3 04×3

03×4 I3×3 03×3
03×4 03×3 I3×3

⎤⎥⎥⎥⎥⎥⎦x=x(k)
∈ R

10×10, (16)

where

[∂(gq)
∂ω⃗

] = − Ts

2∥ω⃗∥ sin(
Ts

2
∥ω⃗∥)qω⃗T

+ [ −q⃗T

q0I − [q⃗]×]{[
Ts cos(Ts

2
∥ω⃗∥)

2∥ω⃗∥ −

sin(Ts

2
∥ω⃗∥)

∥ω⃗∥3 ]ω⃗ω⃗T
+

sin(Ts

2
∥ω⃗∥)

∥ω⃗∥ I}.
(17)

Since all the functions and matrices of the model are already given, the EKF algorithm can be
implemented, which is divied into 3 steps [12: T. Kailath, et al. 2000],

• Step 1: Initialization

Given x̂(0), P (0), Q(k),R(k), where Q(k) = ΓΣw(k)ΓT , R(k) = Συ(k).
• Step 2: Prediction

A priori estimation: state x̂− and error covariance P −

{ x̂−(k + 1) = f(k, x̂(k)) −State estimate extrapolation (nonlinear)
P −(k + 1) = FkP (k)FT

k
+Q(k) −Error covariance extrapolation (linear)

• Step 3: Update

A posteriori estimation: state x̂ and error covariance P

K(k + 1) = P −(k)HT (HP −(k)HT
+R(k))−1 −Kalman gain matrix,

{ x̂(k + 1) = x̂−(k + 1) +K(k + 1)[z(k + 1) −Hx̂−(k + 1)] − State estimate observational update
P (k + 1) = (I −K(k + 1)H)P −(k + 1) −Error covariance update.

• Return the state estimate x̂.
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3. Experimental results 

3.1 Experimental setup and system architecture 

3.1.1 Equipment setup 

The multi-sensor system consists of an optical tracker (NDI) and an IMU. 

The equipment setup is shown in figure 4. The NDI provides quaternion 

attitude measurement of the marker frames, where each frame is formed by 

four passive marker spheres. The IMU provides angular velocity 

measurement. 

 

Figure 4 Equipment setup 

 

3.1.2 System architecture 

The EKF algorithm is offline-implemented in MATLAB after collecting 

experimental data. Frame transformation process is done before the 

algorithm. For the rate of sensors and algorithm, the NDI and IMU has 

sampling period of 16 ms and 8 ms, respectively; thus, zero-order hold 

method is chosen and the sampling period of the EKF algorithm is set as 

16 ms (, or 62.5 Hz). The system architecture and the block diagram for 

EKF algorithm are shown in figure 5 and 6. 
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Figure 5 System architecture 

 

 

Figure 6 Block diagram for EKF algorithm 

 

3.1.3 Experimental setup 

The experiment is conducted in the working volume of NDI, where the 

angular velocity is set as a constant of -9 deg/s with respect to the x-axis 

of the marker mounted on the surgical robot’s end-effector. The marker has 

no relative motion with respect to the end-effector. Then, the frame 

transformation process is done by transforming all the frames as with 

respect to the initial pose of that marker, as shown in figure 7. Throughout 

this, the attitude and angular velocity of the robot’s end-effector can be 

estimated and treated the same as those of the marker frame. Apart from 

NDI and IMU that are involved in the algorithm, the encoder of the robot 
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joint is set as the ground-truth of the experiment. Results of the 

experiment are shown in next subsection. 

 
Figure 7 Experimental setup 

 

 

3.2 Experimental results 

The experimental results of the attitude and angular velocity estimation 

using quaternion-based extended Kalman filter are shown in the below 

figures. Figure 8 and 9 show the estimate of quaternion attitude and angular 

velocity of the robot end-effector; the measurement and ground-truth value 

are also shown. Figure 10 shows the estimate of the angular velocity bias of 

the robot end-effector as compared to its measurement value when the robot 

is at rest initially. 

The algorithm also increases the robustness of the estimates against 

occlusions. Figure 11 shows the results as a 0.5 [s] sudden occlusion occurs. 

The measurements of attitude and angular velocity are being zero-order 

held, while the estimate remains. Figure 12 is a 3D plot that demonstrate 

the rotational motion of the marker frame (as well as the end-effector). It 

can be seen in these figures that the proposed sensor fusion framework 

better estimate the system state, which is comprised of the attitude and the 
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angular velocity of the robot end-effector. The EKF provides estimates that 

are either smoother, or closer to ground-truth, or both, and thus, leads to a 

more robust (against occlusions) and precise perception of the surgical robot 

system. 

 

 
Figure 8 Quaternion attitude estimate, measurement, and ground truth 

 

 
Figure 9 Angular velocity estimate, measurement, and ground truth 
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Figure 10 Angular velocity bias estimate, and measurement at rest 
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Figure 11 Robustness evaluation against sudden occlusions. Zero-order hold 

for measurements during the 0.5 [s] occlusions. Attitude estimate (left) and 

angular velocity estimate (right). 

 

 
Figure 12 3D demonstration of rotational motion of the marker frame 
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4. Conclusion 
In this work, a sensor fusion framework using quaternion-based extended 
Kalman filter is proposed for increasing the robustness and precision of the 
surgical robot’s perception. A mathematic model involving quaternion attitude 
and angular velocity is proposed and implemented in the EKF algorithm, with 
the sensor system constructed by an optical tracker (NDI) and an inertial 
measurement unit (IMU). Experimental results show that the EKF algorithm 
fusing the 2 sensory information with the knowledge of system model, acts as an 
optimal estimator as well as a filter, which gives a more smooth and accurate 
estimate value for the system state. The experiment is conducted offline and 
implemented in MATLAB, and it can be further implemented in C++ or 
Python for real-time estimation in the future. 
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