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Abstract – Kendo, a well known martial art originated from Japan, requires
training in both the sword skills and the way of the swords for its practitioners. To
contribute to a successful attack, it requires the correct orientation and positioning
of the sword upon striking one’s enemy. In this project, we utilize the TM5M-700
robot arm for the grasping of the sword, to execute the appropriate attacks. A
mathematical model - the conformal geometric algebra is used to calculate the
inverse kinematics of the robot arm. A full interactive interface is also generated

for enticing user experience.a

a Github link to all source code is here.
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1. INTRODUCTION

Kendo (剣道) is a martial art originated from Japan.
Descended from the Japanese kenjutsu, it is a practice
of both the sword skills and swordsmanship of its
practitioners. As a modern sport, many different ways
of scoring it has been incorporated. For a strike on an
enemy to count as a successful attack, many criteria
are considered, including: (1) whether the kendo sword
(shinai) is of correct orientations, (2) whether or not
you strike on the allowed attack positions, and (3)
whether you, the attacker, exhibits the will of attack
as a swordsman. The former two criteria requires
sophisticated and accurate motion as well as real-time
adaptation of the sword trajectory, hence, it is a perfect

task for a robot to accomplish.

In this project, we utilized the TM5M-700 robot
arm to accomplish the task of wielding a kendo sword.
To perform the correct trajectories for the swords,
we use the conformal geometric algebra (CGA) as a
mathematical tool for analytic solutions to the inverse
kinematics (IK) problem for the robot arm. Combined
with ganja.js, an interactive GA arithmetic library, we
are able to present the solutions to the IK problem in
real time. We used a RealSense D435 RGBD camera to
detect the enemy in its field of view. The LOGO-CAP
algorithm [logocap; CVPR 2022] is used to detect
the body frame of the enemy, and the data is then feed
into ganja.js to output the command for the robot arm.
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FIGURE 1: Mid Level Stance

The robot arm is able to perform real-time tracking of
the enemy position, and correctly hit the four allowed
attack positions.

1.1. Notations

• x: bold fonts for vectors.
• |x|: vector 2-norm.
• ei: lower-case serif font for orthonormal set of basis

vectors.
• R: the reals; G: the geometric algebra.

2. PROJECT OBJECTIVES

2.1. Details on Kendo

Kendo as a sport is a one-versus-one game, attacking
the other opponent with the sword. There are multiple
rules that constitute a successful attack:

1. the sword should aim at the right attacking
positions (elaborated later),

2. the sword should have the right orientation when
striking the opponent,

3. the attackers should show their vigor and will
of attack while also remaining in focus after an
attempt of attack.

While the last one is more about the swordsmanship
within Kendo, requiring years of training to understand
the concrete meaning behind the vague guidelines,
the former two are easily understandable and even
replicable by a robot arm. We shall hence elaborate
more on what the first two requirements are about.

First, the most prominant starting pose in kendo is
known as the “Chūdan (中段)” or the “mid level stance”
(see Figure 1). This pose ensures that the center line
between you and your opponent is occupied by your
sword: your enemy cannot get closer to you abruptly

FIGURE 2: Attack Positions (source: Wikipedia
Commons)

while many of the attack positions of your enemy are
left wide open and vulnerable to your attack. Secondly.
there are four allowed position for attack, namely: men
(面, the head), kote (小手, the right wrist), do (胴,
abdomen) and tsuki (突き, throat), as illustrated in
Figure 2.

When striking men and kote, the sword moves in an
arc upwards then down, with the blade of the sword
slicing through the corresponding positions from top to
down. When striking do, the blade should be going
in a sideways arc-like motion, so as to slice through the
abdomen of the opponent. Lastly, when attacking tsuki,
it is a simple thrust at the throat of the opponent.

2.2. Objectives

Our project will be utilizing a RealSense D435 RGBD
camera (see Figure 3) as the eyes of the whole system,
detecting the position of an opponent. Next, command
the TM5M-700 robot arm (see Figure 4) to perform
tasks an operator wants. The robot arm shall be able
to perform two modes:

• tracking mode: track the opponent’s position and
remain in the mid level pose while waiting for the
operator’s command;

• attacking mode: attack the four allowed positions
under the command of the operator.

The followings are goals we plan to complete for
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FIGURE 3: RealSense D435 Depth Camera

the project, each point is listed in the sequence of
completion.

1. A suitable inverse kinematics model for the
trajectory planning. We utilized a mathematical
model called conformal geometric algebra for this
task ,more in section 3.

2. Setup of the hardware and software environments,
more in subsection 2.3.

3. Design of the end-effector for the TM robot arm to
held the sword in place (see Figure 5).

4. Robot vision implemented for pose estimation of
the opponent.

5. Integration of the software (pose estimation,
inverse kinematics) and the hardware (the camera,
the robot arm).

6. A user interface for the operator to gain easy access
to information such as whether an attack position
is available, which mode the robot is in, and where
the opponent is at relative to the robot arm.

2.3. Project Structure

Considering the computation load of the LOGO-
CAP algorithm, we decided to dedicate one laptop
(laptop A) to human pose estimation, and assign the
rest of the tasks to a separate laptop (laptop B) to
achieve maximum performance. This leaves us with
four machines to chain together: one camera, two
laptops, and the PC that drives the robot. The camera
is first connected to laptop A via USB, and the latter
two connections are made using ethernet cables. The
architecture of the whole system is shown in Figure 6.

The implementation of individual tasks span different
programming languages and environments, including
plain Python, Python running under ROS, and

FIGURE 4: TM5M-700 Robot Arm with End-Effector
Attached and Sword Equipped

FIGURE 5: Sword Gripper (End-Effector) of the Robot
Arm

JavaScript running in the browser. This motivates
the use of TCP/IP as a bridge across programs. The
WebSocket protocol is used on top of TCP/IP when the
browser is involved, since the browser does not support
raw TCP/IP.

Out of the currently available software packages that
implement GA, we chose ganja.js for its graphical,
interactive nature, which is fitting considering that
CGA is based on geometric primitives. Running in the
browser, it couples nicely with a live code editor as well
as other native web UI components such as buttons and
checkboxes. This enables rapid iteration of our CGA
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FIGURE 6: System Architecture

algorithm development.
Finally, since the provided interface to the robot arm

is built with ROS, the output waypoints of our IK
are encapsulated as messages before being sent as ROS
service calls.

3. INVERSE KINEMATICS WITH CON-
FORMAL GEOMETRIC ALGEBRA

Traditional methods on solving inverse kinematics
require solving systems of trigonometric equations,
often requiring recursions to obtain numerical solutions
to the D-H parameters controlling the robot.

Here we introduce a mathematical tool termed the
conformal geometric algebra (CGA) that will be able
to provide us with analytic solutions to the inverse
kinematics problem of the robot (in our case, this is
a 6-DoF robot arm). This mathematical description
of IK also allows for intuitive relations for one to do
trajectory planning. Detailed introduction to geometric
algebra and conformal geometric algebra are provided
in Appendix A.1 and Appendix A.2, respectively.

3.1. Geometric Ideology

The following ideas are from [KE16; Isi22; Ant04],
where [KE16] proposed a closed-form solution of IK

problem of a collaborative robot arm UR5, [Isi22]
proposed and formulated closed-form solutions of a set
of serial robots with a spherical wrist, and [Ant04]
proposed a clear formula of how the 2 points can
be extracted individually from a point pair (see eqn.
(A.38) for details). In this text, the IK solution is based
on the combination of the ideas taken from the above
three literature.

3.2. Analytic Solution to IK

3.2.1. Denavit–Hartenberg Parameters of TM5M-700
The inverse kinematics (IK) problem first starts with

the Denavit–Hartenberg (D-H) parameters of our robot
TM5M-700, provided in Table 1. Noted that the
modified D-H parameters are used in this text. The
solution to the IK problem is based on the use of the
D-H parameters listed in Table 1.

It is interesting to point out that in CGA-based
methods for IK problems, the origin position of each
frame among the seven (6 axis + 1 base) frames are
first solved, and then the joint variables are solved
afterwards. This is the main difference between the
traditional geometric methods based on matrices and
the CGA-based methods we are using in this text.

The following contexts are all based on the
mathematical fundamentals of CGA. See details of GA
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i αi−1 [rad] ai−1 [mm] di [mm] θi [rad]

1 0 0 145.2 θ1
2 −π

2 0 0 θ2
3 0 329.0 0 θ3
4 0 311.5 -122.3 θ4
5 −π

2 0 106 θ5
6 −π

2 0 113.15 θ6

TABLE 1: D-H table of TM5M-700

and CGA in Appendix A. Also for clearness of the
context, the details of the whole IK solution is not
presented. See the original literature [KE16] for more
detailed development of the IK solution.

3.2.2. Target Pose, Null Points, and Robot Configura-
tions

The i-th frame’s origin position xi, of the total seven
frames ({0}, . . . , {6}), is represented by a null point Xi

in CGA, which is a 5D representation of a point in R3.
The mapping and inverse mapping between the 3D and
5D points are shown below (see details in eqn.(A.27)
and eqn.(A.29)),

Xi = X (xi) ∈ R4,1, (1)

xi = X−1(Xi) ∈ R3. (2)

Given the target pose of the end-effector frame (set as
the 6th frame {6} in this text) with respect to the base
frame, and solving the null points (X0, . . . , X6), the 8
configurations of the 6-DoF robot arm can be explicitly
determined (if reachable), and then the joint variables
can be further calculated using simple geometries.

A simple procedure of solving the null points are
listed below,

x6, (
0
6x,

0
6y,

0
6z)︸ ︷︷ ︸

given target pose

→ X5, X0, X1︸ ︷︷ ︸
trivial solution

→ X4, X3 → X2︸ ︷︷ ︸
CGA-based method

.

Now define the configuration parameters [KE16]
of the robot, which will be used in the following
derivations,

kud = ±1 (elbow up: 1, elbow down: -1), (3)

klr = ±1 (should right: 1, should left: -1), (4)

kfn = ±1 (wrist not flipped: 1, wrist flipped: -1). (5)

3.2.3. IK problem- Solving the Null Points X6,X5,X0,
and X1

Given the target pose of frame {6}, where the target
position is x6, and the target orientation is (06x,

0
6y,

0
6z),

the null points X6 and X5 are then easily determined,

X6 = X (x6), (6)

X5 = X (x6 − d6
0
6z). (7)

The null points representing the origins of base frame
{0} and frame {1} are trivial,

X0 = X (x0 = 0), (8)

X1 = X (x0 + d1e3). (9)

3.2.4. IK problem- Solving the Null Points X4 and X3

The null points X4 and X3 are solved based on strong
geometric insights provided by CGA.

Intersecting 2 spheres, Sc and K0, gives 1 circle C5k,
where

Sc =

(
X5 −

1

2
d24e∞

)⋆

(grade-4 sphere), (10)

K0 =
(
e0 − (S⋆

c · e0)e∞
)⋆

(grade-4 sphere), (11)

C5k = Sc ∨K0 (grade-3 circle). (12)

Intersect the circle C5k and a horizontal plane passing
through X5 gives a point pair Qc, where

Qc = −(X5 ∧ e1 ∧ e2 ∧ e∞) ∨ C5k (grade-2 point pair).
(13)

Extracting each point in a point pair using the
formula provided in eqn. (A.38) and [Ant04],

Xc =

(
1 + klr

Qc√
Q2

c

)
(Qc · e∞) (grade-1 null point).

(14)

This yields the 2 solutions of the null points Xc based
on the shoulder configuration.

Now form a vertical plane Πc passing through Xc,
where

Πc = e0 ∧ e3 ∧Xc ∧ e∞ (grade-4 plane). (15)

Noted that Xc and Πc are auxiliary null point and
plane that can help solve the rest of the null points,
since that X0, X1, X2, and X3 all lie in Πc due to the
geometric nature of the robot links,

X0, X1, X2, X3 ∈ Πc. (16)

Form another vertical plane Π5∥ parallel to Πc, which
is shifted from Πc to pass through both X4 and X5,
where

Π5∥ =
(
Π⋆

c + (X5 ·Π⋆
c)e∞

)⋆
(grade-4 plane). (17)

Form an auxiliary plane Π56 perpendicular to Π5∥
and get the corresponding normal vector n̂56, where

Π56 = (X5 ∧X6)
⋆ ∧ e∞ (grade-4 plane), (18)

n̂56 = −(Π56 · e0) · e∞ (grade-1 vector). (19)

The plane Π56 and its normal vector n̂56 are used
for calculating the plane Π5⊥, which is not only
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perpendicular to Π5∥ but also contains both X4 and
X5, where

Π5⊥ = X5 ∧ n̂56 ∧ e∞ (grade-4 plane). (20)

After defining a bundle of auxiliary planes, intersect
the planes Π5∥ and Π5⊥, gives a line L54 passing
through X4 and X5 (since the 2 planes both contain
X4 and X5), where

L54 = Π5∥ ∨Π5⊥ (grade-3 line). (21)

Define a sphere S5 centred at X5 with a radius of d5,

S5 =

(
X5 −

1

2
d25e∞

)⋆

(grade-4 sphere). (22)

Intersecting the sphere S5 and the line L54 gives a
point pair that contains X4, where

Q4 = L⋆
54 · S5 (grade-2 point pair). (23)

Now extract X4 from the point pair Q4, as we did in
eqn. (14), where

X4 =

(
1 + kfn

Q4√
Q2

4

)
(Q4 · e∞) (grade-1 null point).

(24)

This shows that X4 also has 2 solutions based on the
wrist configuration.

Then, X3 is solved in a similar way, that is,
intersecting a sphere centred at X4 with a radius of
d4, and a line L34 passing through X3 and X4, gives a
point pair Q3 that contains the null point X3, where

S4 =

(
X4 −

1

2
d24e∞

)⋆

(grade-4 sphere), (25)

L34 = X4 ∧Π⋆
c ∧ e∞ (grade-3 line), (26)

Q3 = L⋆
34 · S4 (grade-2 point pair). (27)

Recall that since Πc contains X3, as mentioned in
eqn. (16), it’s not surprising that it can be used for
solving L34 and X3.
Now extract X3 from the point pair Q3, as we did in

eqn. (14) and (24), where

X3 =

(
1 + klr

Q3√
Q2

3

)
(Q3 · e∞) (grade-1 null point).

(28)

This shows that X3 also has 2 solutions based on the
shoulder configuration.

3.2.5. IK problem- Solving the Null Points X2

Since that X3 and X1 are already solved, X2 can be
easily determined. First, we intersect 2 spheres, one

centred at X3 with a radius of a3, another centred at
X1 with a radius of a2, to obtain a circle C2, where

S3 =

(
X3 −

1

2
a23e∞

)⋆

(grade-4 sphere), (29)

S1 =

(
X1 −

1

2
a22e∞

)⋆

(grade-4 sphere), (30)

C2 = S1 ∨ S3 (grade-3 circle). (31)

Recall again that since Πc also contains X2, as
mentioned in eqn. (16), the former can help solve the
latter. Now, intersect the circle C2 and the plane Πc to
get the point pair Q2 that contains X2, where,

Q2 = −Πc ∨ C2 (grade-2 point pair). (32)

Now extract X2 from the point pair Q2, as we did in
eqn. (14), (24) and (28), where

X2 =

(
1 + kud

Q2√
Q2

2

)
(Q2 · e∞) (grade-1 null point).

(33)

This shows that X2 also has 2 solutions based on the
elbow configuration.

Browsing through the solutions of the 7 null points
(X0, . . . , X6), it can be easily seen that, depending
on the signs of the configuration parameters kud,
klr, and kfn, the 8 robot configurations of a single
target pose can be determined explicitly (if reachable);
therefore, the CGA-based IK solution in this text can
be considered a closed-form method.

3.2.6. IK problem- Solving the Joint Variables θi
Since all the null points as well as the geometric

relations among all frames are determined, the joint
variables can be easily solved based on simple
geometries such as the calculating each angle between
2 consecutive lines. The calculation is not presented in
this text due to page limit. For more details, see the
original literature [KE16].

For the geometric pictures of each entities, also refer
to the ganja.js example we wrote and the github here.

3.3. Trajectory Planning

Trajectory planning requires the change of the end-
effector frame {6} as time elapses. In the following,
we shall set the “elapsed time” t ∈ [0, 1]. Note that t
should be rescaled later to fit real moving speed of the
sword.

The motion of the sword when attacking tsuki is the
simplest, requiring a plain translational motion from
the starting position to the end position. To obtain the
two frames, we can first consider the orientation of the
sword tip. Let the sword length be ls, the position of
the sword tip be xst, the inclination of the sword with
respect to the ground be θs, and the plane containing
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the naval-to-naval line v̂N-N and the universal z-axis
be E. Note that the naval-to-naval line is equivalent
to the translational vector from initial position to final
position projected onto the horizontal plane:

v̂N-N = −
(
(xf

6 − xi
6) · (e1 ∧ e2)

)
(e1 ∧ e3). (34)

Then the end-effector frame {6} will have initial
position

x6 = xst − ls · e−Eθs/2v̂N-Ne
Eθs/2, (35)

note that x6 is a function of xst and θs. Given the
initial and final sword tip position and inclination, we
can obtain the respective end-effector frame xi

6 and xf
6.

Since the initial xst is targeted at the throat (the mid
level stance), tsuki only requires a translational motion
by the translator acting on x6:

Ttrans = e−(xf
6−xi

6)·t/2, (36)

and no further rotation is needed.
The motion of the sword when attacking men and

kote are similar, both are a rotational motion with the
center of rotation undergoing a translational motion.
Suppose the sword swings upwards to a max inclination
of θs,Max ≈ 70◦ with center of rotation being x6. Then
the motion of the end-effector frame can be described
by the motor

M = Ttranse
−θsE/2. (37)

θs is a function of time, going from the initial angle of θis
to θs,Max in t ∈ [0, 0.5] by an interpolating cubic spline

(with boundary condition of θ̇s = 0); going from θs,Max

to θfs ≈ 20◦ in t ∈ [0, 0.5].
The motion of the sword when attacking do is

the most complicated. Since the blade of the sword
needs to face sideways instead of downwards like all
the previous ones, an additional rotation in the plane
perpendicular to the naval-to-naval line is required. We
can approximate the motion by including a sideways
rotation:

M = Ttranse
−θsE/2−θdv̂N-NI−1

3 /2. (38)

Where θd is again a function of t, we set is as a parabola
with θd = 0 at t = 0 and θd > 0 at t = 1. See the
following ganja.js code for a better illustration.
At last, to control the TM robot arm, several points

are sampled from the given trajectory and sent as
commands for orientation of the robot.

4. HUMAN POSE ESTIMATION

To estimate human pose in three-dimensional space,
we employ LOGO-CAP, a machine-learning based
human pose estimation approach. LOGO-CAP can
predict 17 two-dimensional keypoints for each pose.
Notice that we use an RGBD camera, RealSense, as the
main visual input. Combine estimated two-dimensional

FIGURE 7: Human pose estimation in RGB image
(left) and depth map (right). The red keypoints are
to be assigned as attack positions.

keypoints and depth map (RGB-D alignment), we
can infer human pose in three-dimensional space. To
reach this, camera calibration and hand-eye calibration
are done to acquire the transformation from camera
coordinates to base coordinates. The result of human
pose estimation and the keypoints is shown in Figure 7.

5. RESULTS AND DEMONSTRATION

5.1. User Interface

The UI is shown in Figure 8. On the left, we have a
3D visualization of our system rendered using ganja.js.
The objects drawn, such as points, lines, and planes, as
well as our CGA algorithm, are defined in JavaScript
written in the editor on the right. Controls are on the
bottom left, which handles networking and controling
the Kendo move of the robot.

In the visualization window, We update the human
body frame in real time as new human pose data
arrives. When we issue a move command, it displays
an animation corresponding to the output sword
trajectory, as shown in Figure 9. The window is
interactive, and we can use the mouse to change the
viewing angle and zoom level to better inspect the
system.

Moreover, since words couldn’t have possibly
illustrate the vigor and enthusiasm of the robot, we have
provided a video showcasing of our work on YouTube. It
goes over the features and demonstrations in full detail.

5.2. Division of Work

Wei-Hsuan Cheng CGA theoretical development,
Robot motion planning.

Wen Perng CGA theoretical development,
Kendo skill technical guidance.

Che-Jung Chuang Robot motion planning,
System integration.

Cheng-Yen Yu Robot vision,
System Integration.
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FIGURE 8: Browser-based UI hosting our CGA algorithm (right), visualization (left top), and controls (left bottom).

FIGURE 9: Animation of a sword trajectory targeting
the body.

6. CONCLUSIONS

By utilizing ganja.js we were able to calculate
inverse kinematics and trajectory planning for the TM
robot arm using the novel mathematical framework
of conformal geometric algebra. Incorporating the
pose estimation using the LOGO-CAP algorithm and
RealSense camera, skeleton of the enemy can be
displayed in an UI, allowing easy game-like control of
the robot arm as if competing in a round of Kendo.

The whole system is linked up across platforms and
seeing the real-time adaptation of the robot arm to
opponent position is exciting. The whole experience,
whether being the controller of the robot or the
opponent facing the robot, is interesting and worth a

try, allowing one to understand and try out the joy of
Kendo.
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APPENDIX A. MATHEMATICAL DETAIL

Appendix A.1. Geometric Algebra

Geometric algebra (GA) is equivalent to the Clifford
algebra proposed by the English mathematician
William Clifford in the 1800s. The former especially
emphasized on the geometric interpretations provided
by the algebraic structures.

An intuitive and mathematically non-rigorous intro-
duction to GA is aimed to be given here, providing the
readers with the basics to understand how to calculate
the equations mentioned in the text. For a further un-
derstanding of the whole topic, please refer to [Per09].

Appendix A.1.1. Grade-1 Basis
Consider a graded algebra Gp,q termed the geometric

algebra with signature (p, q), it is a vector space with its
elements graded from grade-0 to grade-(p+ q) over the
field R. Its grade-0 subspace is the reals R, also coined
the scalars. Its grade-1 subspace is the vector space
of Rp,q, the pseudo-Euclidean space of signature (p, q),
also called the vectors. The vector space Rp,q is spanned
by an orthonormal basis with a total of p + q basis
vectors {ei}p+q

i=1 defined by their inner product relation1:

ei · ej = gij =


1 , i = j = 1, · · · , p;
−1 , i = j = p+ 1, · · · , p+ q;

0 , i ̸= j.

(A.1)

This is the canonical basis vectors of Rp,q. Let us
construct the whole graded algebra Gp,q by the its grade-
1 components.

Appendix A.1.2. Outer Product
A general element in Gp,q is termed a multivector.

Consider a new operation termed the outer product.
Denoted by ∧, it is an associative bilinear product that
distributes over addition of multivectors:

∧ : Gp,q × Gp,q → Gp,q (A.2)

(M1,M2) 7→ M1 ∧M2. (A.3)

Moreover, we can consider the graded-r subspace of Gp,q

as Gr
p,q, then the outer product satisfies the additivity

of grade:
∧ : Gr1

p,q × Gr2
p,q → Gr1+r2

p,q . (A.4)

Furthermore, to actually be able to calculate the outer
product, we define their action on the grade-1 basis as
anti-symmetric, satisfying

ei ∧ ej = −ej ∧ ei (∀i, j = 1, · · · , p+ q). (A.5)

1 The inner product mentioned here is not necessarily non-
negative. For two vectors u = uiei and v = ujej (Einstein
summation convention used) in Rp,q , their inner product is
defined as u · v = uivjgij , where the metric is gij =
diag( +1︸︷︷︸

×p

, −1︸︷︷︸
×q

).

The calculation of outer products between two
multivectors can be easily extended via associativity
and bilinearity. And the outer product with the grade-0
elements, is simply the scalar scaling.

An example is as below: consider in G3,0,

(1 + e1) ∧ (e2 + e1 ∧ e3) =1 ∧ e2 + e1 ∧ e2

+ 1 ∧ e1 ∧ e3 + e1 ∧ e1 ∧ e3

=e2 + e1 ∧ e2 + e1 ∧ e3 + 0.

To reduce crowding of the subscripts, we conduct the
convention below: given subscripts I and J , then

eI ∧ eJ =: eIJ . (A.6)

A multivector has mixed-grade components in it. To
extract components with a given grade r, we shall
define the grade selection operator ⟨·⟩r that is linear
and satisfies: for all multivector M ∈ Gp,q,

⟨M⟩r ∈ Gr
p,q, (A.7)

and for all Mr ∈ Gr
p,q, ⟨Mr⟩r = Mr. Moreover, we

denote the grade-0 selection operator as ⟨·⟩0 ≡ ⟨·⟩.

Appendix A.1.3. Geometric Product
Between vectors, we have already defined the inner

product; for multivectors, we have defined the outer
product. It would be really convenient for us to extend
the definition of the inner product to multivectors, or
even better, combine the two products to obtain a more
omnipotent product. Here we shall define the geometric
product : for A, B, C ∈ Gp,q and a ∈ G1

p,q = Rp,q, the
geometric product (denoted by concatenation) satisfies

1. closure: AB ∈ Gp,q;
2. associativity: A(BC) = (AB)C;
3. distributivity: A(B + C) = AB + AC and (A +

B)C = AC +BC;
4. ∃ 1 ∈ Gp,q such that 1A = A;
5. a2 := a · a.

Consider the following product:

(a+ b)2︸ ︷︷ ︸
∈R

= (a2 + b2)︸ ︷︷ ︸
∈R

+(ab+ ba),

hence we know that ab+ ba ∈ R. By simple geometric
arguments, We can know that this symmetric product
is in fact the inner product:

a · b =
1

2
(ab+ ba). (A.8)

We then define the anti-symmetric sum as the outer
product:

a ∧ b :=
1

2
(ab− ba). (A.9)

In fact, for multivectors Ar = ⟨Ar⟩r and ⟨Bs⟩s, we
can define their inner and outer product as:

Ar ·Bs := ⟨ArBs⟩|r−s|, (A.10)

Ar ∧Bs := ⟨ArBs⟩r+s. (A.11)

CSIE5074 Robotics, 2023 Fall



Kendo Robot- Combining Robotics Technologies with Martial Art 11

Grade Name Basis
0 Scalar 1
1 Vectors ei i ∈ {1 ∼ p+ q}
2 Bivectors eij i ̸= j ∈ {1 ∼ p+ q}
3 Trivectors eijk i ̸= j ̸= k ∈ {1 ∼ p+ q}
k k-vectors eI Index set: |I| = k

p+ q Pseudoscalar I := e12···(p+q)

TABLE A.1: Canonical Basis of Gp,q

The results can be extended to all multivectors by
defining the inner and outer product as bilinear
operations.

Appendix A.1.4. Geometric Algebra
Consider the geometric product between the canoni-

cal basis vectors, they satisfy

eiej =

{
ei · ej = ejei , i = j;

ei ∧ ej = −ejei , i ̸= j.
(A.12)

These relations between the basis vectors allow us
to actually calculate the inner, outer and geometric
product between any multivectors. Also, we can
construct a set of canonical basis for the whole Gp,q as in
Table A.1. As can easily be seen, the grade-k subspace
has

(
p+q
k

)
bases. The basis of the highest grade is often

coined the pseudoscalar, denoted by I. For example, in
G3, I = e123 =: I3.

Appendix A.1.5. Duality
The grade-k and grade-(p+q−k) subspace of Gp,q has

the same dimensions, and naturally, a duality between
the two subspaces exists. We define the duality as

⋆ : Gr
p,q → Gp+q−r

p,q (A.13)

M → M⋆ := M/I. (A.14)

Where the division by the pseudoscalar is defined as
multiplication by the inverse of I, which is

I−1 = I3 = (−1)(p+q−1)(p+q)/2+qI. (A.15)

The result can be easily extended to all multivectors by
defining the duality as a linear operator. The inverse
operator, undual, is defined by: (M⋆)−⋆ = M for all
multivectors M .

Appendix A.1.6. Important Formulas
Before ending this subsection, a few important and

useful formulas are introduced without proof. Consider
Ak = a1 ∧ a2 ∧ · · · ∧ ak and Bl = b1 ∧ b2 ∧ · · · ∧ bl,
denote

[Ak/ai] = a1 ∧ · · · ∧ ai−1 ∧ ai+1 ∧ · · · ∧ ak. (A.16)

For k ≤ l, we have

Ak ·Bl = [Ak/ak] · (ak ·Bl). (A.17)

Let a be a vector, then

a ·Ak =

k∑
i=1

(−1)i+1(a · ai)[Ak/ai]. (A.18)

Lastly, exponentials of a multivector M can be defined
by the Taylor series expansion:

eM :=

∞∑
n=0

Mn

n!
. (A.19)

Appendix A.2. Conformal Geometric Algebra

The conformal geometric algebra (CGA) is a flavour
of the geometric algebra, able to represent and work
with geometric objects such as points, lines, circles,
planes and spheres. Namely, it works with G4,1 to
represent the geometric objects mentioned and their
meets and joins as well as them under conformal
transformations such as mirroring, rotation, translation
and sphere inversion. Due to the algebra having
spheres, lines and rigid body motion, it is useful in
solving inverse kinematics problem in robotics.

The grade-1 canonical basis vectors of G4,1 is
{e1, e2, e3, e+, e−}, where: e21 = e22 = e23 = e2+ = 1,
e2− = −1 and ei · ej = 0 for i ̸= j. The pseudoscalar
of the algebra is defined as I := e123+−, I−1 = −I;
the pseudoscalar of the R3 subspace is I3 := e123,
I−1
3 = −I3.
We further define two vectors (not the basis) to make

the notations of the following writing much clearer:

e∞ := e− + e+, (A.20)

e0 :=
1

2
(e− − e+). (A.21)

They satisfy:

e2∞ = e∞ · e∞ = 0 = e0 · e0 = e20, (A.22)

e∞ · e0 = −1, (A.23)

e∞0 := e∞ ∧ e0 = e+−. (A.24)

Appendix A.2.1. Up-Projection
Here we motivate the representation of points in

CGA. To describe spheres and conformal transforma-
tions, it is natural for us to first stereographically project
a point x from R3 to S3 ↪→ R4 by

S(x) := 2x

x2 + 1
+

x2 − 1

x2 + 1
e∞. (A.25)

Moreover, in order for affine transformations be allowed
in our algebra, we need to homogenize the objects
by including a fifth dimension e−. This is the up-
projection, also called the Hestenes’ embedding, defined
by

X (x) :=
1

2
(x2 + 1)(S(x) + e−). (A.26)
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S3

e− R3

e+

S(x)
x

X (x)

K4

FIGURE A.1: Null Cone and Up-Projection

This embedding can up-project a point x ∈ R3 to
R4,1 = G1

4,1 as

X ≡ X (x) := x+
1

2
x2e∞ + e0. (A.27)

Arbitrary scalings of the image of R3 ∪ {∞} (the
extended reals, by including the point(s) at infinity) by
X is a 4-dimensional cone K4 in R4,1 termed the null
cone (see Figure A.1). For all α ∈ R, they satisfy(

αX (x)
)2

= 0, (A.28)

in fact, this is a necessary and sufficient condition for
points on the null cone. For all points on the null
cone, an inverse embedding, called the down-projection,
exists to project the points back to R3:

X−1 : X 7→ x =

∑3
i=1(X · ei)ei
−X · e∞

. (A.29)

It is mentioned that G4,1 includes spheres, planes,
circles and lines as algebraic objects, i.e., as
multivectors, so how do we define and justify the
geometric interpretation of multivectors? For a
multivector A ∈ G4,1, we shall define two null spaces
associated with it: the inner product null space and the
outer product null space. They are defined, respectively,
as

IN (A) := {x ∈ R3 | X (x) ·A = 0}, and (A.30)

ON (A) := {x ∈ R3 | X (x) ∧A = 0}. (A.31)

A geometric object can each be described using the in-
ner product or the outer product null space represen-
tation. The inner product null space representation is
easier to describe the meets (intersections) of geometric
objects, while the outer product null space representa-
tion is easier to describe the joins (unions) of geometric
objects. The two representations are interchangeable
by dualizing the representing multivector.

Consider the null space of A∧B, where A, B are two
multivectors in G4,1. First note that for A be grade-1,
by utilizing eqn.(A.18),

x ∈ IN (A ∧B) ⇔ X (x) · (A ∧B) = 0

⇔ (X (x) ·A)B −A ∧ (X (x) ·B) = 0

⇔ x ∈ IN (A) ∩ IN (B).

Hence, the outer product is equivalent to the meet of
geometric objects under the inner product null space
representation. Next, note that

x ∈ ON (A ∧B) ⇔ X (x) ∧ (A ∧B) = 0

⇔ x ∈ ON (A) ∪ ON (B).

Hence, the outer product is equivalent to the join of
geometric objects under the outer product null space
representation.

Moreover, it can be shown that for A ∈ G4,1 having
grade not equal to 0 or 5, then

A ∧ X (x) = (A⋆ · X (x))−⋆. (A.32)

Therefore,
ON (A) = IN (A⋆). (A.33)

Finally, note that any multivector A when scaled by a
nonzero scalar α, it’s geometric representation doesn’t
change. We thus denote such equivalence relation as

A ∼ αA (α ̸= 0). (A.34)

Appendix A.2.2. Inner Product Null Space
We shall start from the multivectors with grades

equal to 1 and build towards grade-4 objects.
Consider the vector

S = X (a)− 1

2
ρ2e∞, (A.35)

where ρ ∈ R, ρ ≥ 0 and a ∈ R3. Then

X (x) · S = 0 ⇔ (x− a)2 = ρ2. (A.36)

Hence, eqn.(A.35) represents a sphere. The special case
where ρ = 0 results in X (a) being a sphere with zero
radius, i.e. a point. Another limit is by taking the
center of sphere ata− ρâ and ρ → ∞, obtaining

P ∼ â+ |a|e∞. (A.37)

This is a plane intersecting a with normal â := a/|a|.
Next, by meeting two grade-1 spheres S1 and S2, we

obtain their intersection as a grade-2 circle C = S1∧S2.
If the spheres are taken to be planes P1 = â + αe∞
and P2 = b̂ + βe∞, then their meet will be the line
L = P1 ∧ P2 = â ∧ b̂+ (βâ− αb̂) ∧ e∞.

We know that three spheres meet at a point pair.
Hence for spheres S1, S2 and S3, we have the point
pair Q = S1 ∧ S2 ∧ S3. When one point of the point
pair is located at infinity, then we call this point pair a
homogeneous point.
Lastly, four spheres meet at a single point. Hence a

point can either be represented by a zero-radius sphere,
or as S1 ∧ S2 ∧ S3 ∧ S4.
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IN ON Grade # of Basis Basis

Sphere S (Point A),
Point A 1

5 e1, e2, e3,
Plane P 4 e∞, e0
Circle S1 ∧ S2, Point Pair A ∧B,

2
10 e23, e31, e12, e1∞, e2∞,

Line P1 ∧ P2 Homo. Point A ∧ e∞ 6/4 e3∞, e10, e20, e30, e0∞
Point Pair S1 ∧ S2 ∧ S3, Circle A ∧B ∧ C,

3
10 e23∞, e31∞, e12∞, e230, e310,

Homo. Point P1 ∧ P2 ∧ P3 Line A ∧B ∧ e∞ 4/6 e120, e10∞, e20∞, e30∞, e123

Point S1 ∧ S2 ∧ S3 ∧ S4
Sphere A ∧B ∧ C ∧D,

4
5 e123∞, e230∞,

Plane A ∧B ∧ C ∧ e∞ 4 e310∞, e120∞, e1230

◦ Note: Blue and teal objects are those that extended to infinity
The former being the inner product null space representation, and cannot contain e0’s;
the latter being the outer product null space representation, and must contain e∞.

TABLE A.2: Geometric Objects in Null Space Representations

Appendix A.2.3. Outer Product Null Space
By eqn.(A.33), we know that the inner and outer

product null space representation of the same geometric
object uses dual algebraic entities.

Since for all A = X (a), we have A ∧ X (a) = 0. The
grade-1 point is represented by the same algebraic entity
in both representations. Subtle difference between the
two lies in the fact that the inner product null space
relies on the signature while the outer product null
space depends only on the algebraic structure.

By joining two points, we effectively obtain a grade-
2 point pair Q = A ∧ B representing the points a
and b ∈ R3, where A = X (a) and B = X (b). I.e.
ON (A ∧ B) = {a, b}. If one of the point is at
infinity: B = X (∞) = e∞, then we have the grade-
2 homogeneous point H = A ∧ e∞ = a ∧ e∞ + e0 ∧ e∞,
where ON (H) = {a}. To extract one of the points from
a point pair Q = A ∧ B, we have the following useful
formula:(

1± Q√
Q2

)
(Q·e∞) = −2A or 2B ∼ A or B. (A.38)

By joining three points, we uniquely defined a grade-
3 circle K = A∧B ∧C going through the three points.
A grade-3 line would require one of the points be at
infinity or that they are co-linear.

Lastly, by joining four points we can obtain a grade-4
sphere S = A ∧ B ∧ C ∧ D. If one of the point is at
infinity or the points are co-planar, we obtain a grade-4
plane.

All the representations of a geometric object is
summarized in Table A.2. In practice, we often
switch between the two representations of the geometric
objects and opt for the representation with a lower
grade for easier calculations.

Appendix A.2.4. Transformations
Geometric algebra (CGA especially) is useful in

describing geometries not only because of the inclusion
of geometric objects as algebraic entities, but also

because it includes transformations that are described
by the geometric objects that are left invariant. The
following discussions are all in the inner product null
space representation

The first of such transformation is reflection by plane
P and inversion2 by sphere S. Consider a geometric
object A, its sandwich product by P is

PAP, (A.39)

equivalent to A reflected across P . Similarly,

SAS (A.40)

represents A inverted across the sphere S. Note that
plane reflection is just a special case of sphere inversion
for when the radius of the sphere goes to infinity.

We can further composite the sphere inversions to
obtain all conformal transformations. We shall discuss
those transformations that are useful for our purpose,
i.e. translations and rotations that can actually be
applied on rigid bodies3. Consider two consecutive
reflection across parallel planes P1 = â+α1e∞ and P2 =
â+α2e∞, all geometric entities should be translated by
t = 2(α2 − α1)â

4. Algebraically, we have

A 7→ P2P1AP1P2 =

(
1− t

2
e∞

)
A

(
1 +

t

2
e∞

)
(A.41)

= e−te∞/2Aete∞/2. (A.42)

Without a doubt, the direction vector t is left invariant
by the translation transformation. The exponential
term is called the translator.

2 Consider a sphere with radius ρ and center c, then the
inversion of the point a by the sphere is

c+
ρ2

|a− c|2
(a− c).

3 The compositions of translations and rotations form the
special Euclidean group SE(3).

4 Note the double distance!
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If the two planes of reflection are not parallel, with
P1 = â1 + α1e∞ and P2 = â2 + α2e∞. The two planes
intersect at an angle θ

2 across the line L = P1∧P2/ sin
θ
2 .

Then the consecutive reflection generates a rotation of
θ5 around the line L:

A 7→ P2P1AP1P2 = e−Lθ/2AeLθ/2, (A.43)

since

P2P1 = cos
θ

2
− L sin

θ

2
.

The exponential term is called the rotor. The
exponent of the rotor is the outer product of two
linearly independent vectors lying on the plane of
rotation. The dual of the exponent is the usual “cross
product” direction of rotation. Once again, the rotation
transformation is described by the line left invariant by
it.

Composition of rotors and translators, as a general-
ization of the both, is often called a screw since it gen-
erates a screw motion in space. And in CGA, we often
call translators, rotors and screws together as motors,
objects that describes motion in space.

5 Note the double angle!
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